Proposed Operational Improvements to the I-285 & I-20 West Interchange

ATLANTA CYPRESS ENGINEERING

James Pofahl, Alexandria Hare, Ramiro Santana, Blane Solomon

Sponsored By:

Why Operational Improvements at I-285 & I-20 W? 🕄

Major Mobility Improvements Program (MMIP)

- What is it?
 - \$11 billion program that covers 11 major roadway construction projects
- When?
 - Collectively expected to be completed by 203
- Why?
 - Effort to reduce delay and travel time by 5%
 - Improve passenger and freight movement

Interchange Reconstruction:

1-16/1-05 Interchange 1-285/1-20 West Interchange

3. I-285/I-20 East Interchange

Express Lanes:

- Revive 285 Express Lanes 1-75 to 1-85
- SR 400 Express Lanes I-285 to McFarland Pkwy.
- I-285 East Wall Express Lanes I-85 to I-20
- I-285 West Wall Express Lanes I-20 to I-75

Interstate Widening:

- I-85 North Widening Hamilton Mill Rd. to SR 211
- I-16 Widening I-95 to I-516
- 10. I-85 North Widening SR 211 to US 129

Commercial Vehicle Lanes:

 Commercial Vehicle Lanes SR 155 to I-475

The Team

Project Location

Project Scope

- Existing conditions analysis of the I-285 and I-20 interchange on the west side
- Operational improvements
 - Short-term, low-cost alternative proposal: prior to MMIP reconstruction
 - Long-term alternative proposal: in case of MMIP delay
- Budget
 - Short-term alternative: ~\$5 million
 - Long-term alternative: ~\$15 million
- Alternatives should limit potential rework from future reconstruction

AM Peak Traffic Conditions

PM Peak Traffic Conditions

7

PM Peak Traffic Conditions

Existing Lane Configurations

9

Left Hand Exits

- I-285 S to I-20 W
- I-285 N to I-20 W
- I-20 S to I-285 S
- Driver expectancy violation
- Abrupt merges due to uncommon configuration

Exit Lane Configurations: I-20 E to I-285

Exit Lane Configurations: I-285 N to I-20 WENGINEERING

285

Google Earth

Exit Lane Configurations: I-20W to I-285 SENGINEERING

 Leftmost lane on the mainline widens and then splits into through and exit only lanes

Added lane for I-20 W to I-285 S Exit

Exit Lane Configurations: I-285 to I-20 W

 Two exit lanes from I-285 merge into a single lane that merges with rightmost lane on I-20 W

Steep Grade Exit I-285 S to I-20 W

 Heavy vehicles struggle in stop and go traffic

Existing Traffic Volumes

- GEOCOUNTS
 - Permanent Stations
 - Hourly volume distribution
 - PM peak
- 2015 and 2018 data
- Total volume distributions for 4 directions
- Assumptions at portable stations on ramps

Location of Permanent Stations

Existing Signage

Existing Heavy Vehicle Volumes

- High percentage of heavy vehicles
- Compounded congestion and grading issues

Vehicle Approach	Heavy Vehicle Per Hour (%)
I-20 West	5.5
I-20 East	5.85
I-285 North	15.2
I-285 South	15.75

Table 1. Percent Heavy Vehicle Traffic for Each Mainline Approach

VISSIM Modeling

- Constructed a VISSIM model to evaluate the interchange performance before and after implementation of alternatives
- Based on existing conditions data:
 - PM Peak Volumes
 - 2:00 PM to 6:00 PM
 - % Heavy Vehicles
 - Vehicle Distributions
 - Existing Speed Limits
 - Unknown speed limits?

VISSIM Modeling: Vehicle Distributions

Approach	Movement	Vehicle Distribution (%)
I-20 (WB)	To I-285 N	18.6%
	Through I-20 W	62.1%
	To I-285 S	13.3%
	To MLK Jr Drive NW	6.0%
	To I-285 S	19.6%
I-20 (EB)	Through I-20 E	57.4%
	To I-285 N	23.0%
	To I-20 E	10.0%
I-285 (NB)	Through I-285 N	77.4%
	To I-20 W	12.6%
	To I-20 W	12.5%
I-285 (SB)	Through I-285 S	78.7%
	To I-20 E	8.7%

VISSIM Modeling: Simulations

- Each VISSIM model ran 5 times
- Applied 1.045% annual vehicular volume increase

	No Build Design (2018)	Short Term Alternative (2023)	Long Term Alternative (2028)
2018 Traffic Volumes	Х	Х	X
2023 Traffic Volumes	Х	Х	
2028 Traffic Volumes	Х		Х

VISSIM Modeling: Existing Conditions

Project Focus: I-285 to I-20 W Bottleneck

Location of the Bottleneck in context of Surrounding Network

Location of the Bottleneck within the Interchange

Short-Term Design Alternatives

Two proposed short-term design alternatives – projected for 2023:

- In-pavement Interstate Shields
- Changes to the mainline configuration of I-20 W to drop a lane prior to the I-285 to I-20 W exit

In-Pavement Interstate Shields

- Texas A&M Study
 - Used in:
 - Texas
 - Tennessee
 - Florida
 - Georgia
 - Tom Moreland Interchange
- Location Placement
 - After overhead sign
 - > 500 feet, but < 1000 feet

Isting Lane Configuration of I-20 West to I-2 North Exit Proposed Configuration of I-20 West to I-285 North Exit

Proposed Lane Configuration of I-20 West between Exit 51B and Exit From I-285

Lane Configuration of I-285 Exits to I-20 West

Proposed Lane Configuration of I-285 Exits to I-20 West Exit

Mainline Drop/Add Alternative Change Locations

VISSIM Modeling: 2023 Conditions

I-20 W Mainline Drop/Add VISSIM Results ENGINEERING

Interchange Movement	Travel Time (min)	Vehicle Delay (min)
1: I-20 W through	+2.1	+1.7
2: I-20 W to I-285 N	+4.3	+3.8
3: I-20 W to I-285 S	+1.9	+1.5
4: I-20 E to I-285 S	+2.7	+2.6
5: I-20 E to I-285 N	+1.4	+1.3
6: I-20 E through	+0.7	+0.6
7: I-285 S to I-20 W	-7.4	-7.3
8: I-285 S through	+0.5	+0.6
9: I-285 to I-20 E	0.0	+0.1
10: I-285 N through	-0.9	-1.1
11: I-285 N to I-20 W	-10.6	-10.8
12: I-285 N to I-20 E	-0.4	-0.6
Total	-5.8	-7.6

I-20 W Mainline Drop/Add Results

Interchange Movement	Travel Time (min)	Vehicle Delay (min)
2: I-20 W to I-285 N	+4.3	+3.8
4: I-20 E to I-285 S	+2.7	+2.6
7: I-285 S to I-20 W	-7.4	-7.3
11: I-285 N to I-20 W	-10.6	-10.8

Long Term Alternative

One proposed long-term design alternative – projected for 2028:

- Widening of I-20 W from Fairburn Road Bridge to Fulton Industrial Boulevard
 - 4 lanes to 5 lanes
 - 1.33 miles
- Single lane, self-supporting bridge over MLK Jr. Drive
 - Approximately 12,750 sq. ft

Long Term Alternative

VISSIM Modeling: 2028 Conditions

I-20 Widening Alternative VISSIM Results ENGINEERING

Interchange Movement	Travel Time (min)	Vehicle Delay (min)
1: I-20 W through	+1.08	+0.94
2: I-20 W to I-285 N	+7.12	+7.02
3: I-20 W to I-285 S	+0.73	+0.58
4: I-20 E to I-285 S	+4.34	+4.01
5: I-20 E to I-285 N	+2.73	+2.37
6: I-20 E through	+1.63	+1.27
7: I-285 S to I-20 W	-7.62	-7.48
8: I-285 S through	+0.40	+0.55
9: I-285 to I-20 E	+0.06	+0.08
10: I-285 N through	-1.01	-1.21
11: I-285 N to I-20 W	-11.18	-11.37
12: I-285 N to I-20 E	-0.48	-0.68
Total	-2.32	-3.93

I-20 Widening Alternative Results

Interchange Movement	Travel Time (min)	Vehicle Delay (min)
2: I-20 W to I-285 N	+7.12	+7.02
4: I-20 E to I-285 S	+4.34	+4.01
7: I-285 S to I-20 W	-7.62	-7.48
11: I-285 N to I-20 W	-11.18	-11.37

Project Limitations

- Assumptions for traffic counts and speed limits
- Traffic flow in 2023 and 2028
- Heavy vehicle volume changes
- Extent of VISSIM model does not capture greater network

Conclusion

- Primary focus:
 - Alleviate the bottleneck at the two I-285 to I-20 West ramps
- Short-term design alternatives
 - In-pavement signage at 9 locations
 - Lane drop along I-20 West
 - Saved 7 and 10 minutes on the two merging ramps
 - Decreases capacity along I-20 W mainline
- Long-term design alternative
 - Single lane, and bridge, addition to the rightmost lane of I-20 West
 - Saved 7 and 11 minutes on the two merging ramps
 - Maintains capacity along I-20 West

Lessons Learned

- Sometimes solutions can be simple...and cheap
- Model creation is an iterative process
 - No perfect model exists
- "A jack of all trades is a master of none, but oftentimes better than a master of one"
- There is no "I" in team

Special Recognitions

- Team Members Blane Solomon, Andrew Pofahl, and Alex Hare
- GDOT Chris Rudd, Matthew Fowler, and Tim Matthews
- Georgia Tech Dr. Kari Watkins, Dr. Michael Rodgers, and Dr. Lisa Rosenstein
- Kimley-Horn Lance Ballard

GDQ Georgia Department of Transportation

Georgia School of Civil and Environmental Engineering College of Engineering

QUESTIONS?